Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 18 имени А.П. Ляпина станицы Урухской»

Рассмотрено
на заседании
методического совета
протокол № 1
от « 30 » Of 2022г.

Рабочая программа внеурочной деятельности «Химия и медицина» для 10 классов с использованием оборудования центра «Точка роста»

Срок реализации: 2022-2023 учебный год

Учитель первой квалификационной категории: Литвинец Валентина Васильевна

Рабочая программа составлена на основе следующих документов:

- Федеральный закон от 29.12.2012 № 273-ФЗ (ред. От 30.12.2021) «Об образовании в Российской Федерации» (с изм. и доп., вступ. в силу с01.01.2022);
- Приказ Минпросвещения России от 31.05.2021 №278 «Об утверждении федерального государственного образовательного стандарта основного общего образования»;
- Приказ министерства просвещения РФ от 9 ноября 2018 г. №196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоравления детей и молодежи» Постановление Главного государственного санитарного врача от 28.09.2020 №28;

- СП 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и безвредности для человека факторов среды обитания» Постановление Главного государственного санитарного врача от 28.01.2021 №2;
- Фундаментального ядра содержания общего образования и в соответствии с Государственным стандартом общего образования (приказ Министерства образования и науки Российской Федерации от 17.12.2010 г. № 1897);
- Рабочей программы. Предметная линия учебников Г.Е.Рудзитиса, Ф.Г.Фельдмана. 10-11 классы: пособие для учителей общеобразовательных организаций /Н.Н. Гара. 4 изд., доп. Москва: Просвещение, 2020 г.
- Примерной программы среднего общего образования по химии для 10-11 классов, допущенная Департаментом образовательных программ и стандартов общего образования МО РФ.
- Федерального перечня учебников, рекомендованного (допущенного) Министерством образования и науки РФ к использованию в образовательном процессе в общеобразовательных учреждениях на 2022-2023 учебный год.
- Методических рекомендаций министерства просвещения Российской Федерации по «Реализации образовательных программ естественнонаучной и технологической направленностей по химии с использованием оборудования центра «Точка роста» (утверждены распоряжением Министерства просвещения Российской Федерации от 12 января 2021 г.№ Р-6).
- Основной образовательной программы МБОУ СОШ № 18 им. А. П. Ляпина на 2022-2023 учебный год.
- Учебного плана МБОУ СОШ № 18 им. А. П. Ляпина на 2022 2023 учебный год.

Учебно-методическое обеспечение курса химии основной общеобразовательной школы

- Рудзитис Г. Е. Химия: 10 кл.: учеб. для общеобразоват. учреждений / Г. Е. Рудзитис,
 Ф. Г. Фельдман. М.: Просвещение.
- Химия: 10 кл.: электронное приложение к учебнику.
- Гара Н. Н. Химия. Рабочие программы. Предметная линия учебников Г. Е. Рудзитиса, Ф. Г. Фельдмана. 10-11 классы / Н. Н. Гара. М.: Просвещение., 2020 г.
- Алексинский В.Н. Занимательные опыты по химии. М.: Просвещение, 1995;
- Глушенков В.В. Фармацевтическая химия. М.: Академия, 2005;
- Головнер В.Н. Химия. Интересные уроки из зарубежного опыта преподавания. М.: Энас, 2005;
- Грандберг И.И. Органическая химия. М.: Дрофа, 2002;
- Гриффит Х.В. Новейшие лекарственные средства. М.: Крон-Пресс, 1998;
- Демидов В.А. В химической лаборатории. Библиотечка "Первого сентября", серия "Химия", вып. 4 (16). М.: Чистые пруды, 2007;
- Еремин В.В., Кузьменко Н.Е. Сборник задач и упражнений по химии. Школьный курс. М.: Оникс 21 век, 2005;
- Кендиван О.Д.-С., Хомушку С. Контролирующие материалы по химии с практической направленностью. Химия (ИД "Первое сентября"), 2007, № 11;
- Крылов Г.В. Травы жизни и их искатели. Томск: Красное знамя, 1992;
- Николаева М.В. Элективный курс "Путешествие в мир фармакологии". Химия (ИД "Первое сентября"), 2006, № 2;
- Штремплер Г.И. Элективный курс "Введение в фармацевтическую химию". М.: Дрофа, 2006;
- Шулутко Б.И. Справочник терапевта. М.: Ренкор, 1999;
- Юрина А.А. Элективный курс "Химия и медицина". М.: Дрофа, 2006.

Рекомендуемая литература для учащихся:

- Рудзитис Г.Е., Фельдман Ф.Г. Химия: 10 кл.: учебник для общеобразовательных учреждений -М.; Просвещение, 2020-2021 гг.
- Гара Н.Н. Химия: задачник с «помощником»: 10-11 классы / Н.Н. Гара. М.: Просвещение.
- Библиотека научно популярных изданий для получения дополнительной информации по предмету (в кабинете химии и в школьной библиотеке).
- Володина М.А. Сборник конкурсных задач по химии с решениями. М.: Изд-во Моск. ун-та, 1983;
- Медико-санитарная подготовка учащихся. Под ред. П.А.Курцева. М.: Просвещение, 1988;
- Кузнецова Н.Е., Литвинова Т.Н., Левкин А.Н. Химия: 11 класс. М.: Вентана-Граф, 2005;
- Пастушенков Л.В., Пастушенков А.Л., Пастушенков В.Л. Лекарственные растения. Л.: Лениздат, 1990;
- Пичугина Г.В. Химия и повседневная жизнь человека. М.: Дрофа, 2006.

Цель курса: продолжить формирование у учащихся понимания важности сохранения здоровья; дать представление о профессиях, связанных с медициной; предоставить учащимся возможность удовлетворить свои познавательные интересы в области химии и медицины в процессе проведения экспериментальных работ.

Задачи курса:

- Актуализировать и расширить знания учащихся по вопросам здоровьесбережения;
- Научить школьников анализировать свой образ жизни с точки зрения влияния на здоровье;
- Ознакомить учащихся с процессами, происходящими в организме человека, с действием химических веществ на живой организм, с приёмами оказания доврачебной помощи;
- Совершенствовать умение обращения с химическими веществами, химическими приборами и оборудованием, навыки решения экспериментальных и расчетных задач;
- Способствовать развитию творческих способностей, наблюдательности и воображения.

1. Личностные и метапредметные результаты освоения курса внеурочной деятельности

Учащиеся должны знать:

- Понятия «лекарственные вещества», «ядовитые вещества», роль неметаллов и металлов в природе;
- Фармокологические группы лекарственных средств в зависимости от их лечебного действия;
- Влияние на состояние здоровья человека вредных веществ;
- Правила пользования лекарственными средствами и условия их хранениния;

• Правила техники безопасности при выполнении химического эксперимента.

Учащиеся должны уметь:

- Проводить качественные реакции на анионы;
- Работать с лабораторным оборудованием;
- Идентифицировать лекарственные средства с помощью химических реакций;
- Решать расчетные задачи с медицинским содержанием;
- Работать в группе;
- Анализировать состав лекарственных препаратов.

Требования к результатам обучения (сформированность УУД) Личностные результаты:

- Осознание единства и целостности окружающего мира, возможности его познания и объяснения на основе достижения науки;
- Знание основных принципов и правил отношения к живой природе, основ здорового образа жизни и здоровьесберегающих технологий;
- Развитие познавательных интересов и мотивов, направленных на изучение живой природы; интеллектуальных умений (доказывать строить рассуждения, анализировать, сравнивать, делать выводы и др.); эстетического восприятия живых объектов;
- Осознание потребности и готовности к самообразованию, в том числе и в рамках самостоятельной деятельности вне школы; умение определять жизненные ценности, объяснять причины успехов и неудач в учебной деятельности, применять полученные знания в практической деятельности;
- Оценивание жизненных ситуаций с точки зрения безопасного образа жизни и сохранения здоровья;
- Признание ценности жизни во всех её проявлениях и необходимости ответственного, бережного отношения к своему здоровью; соблюдение правил поведения в природе;
- Понимание значения обучения для повседневной жизни и осознанного выбора профессии;
- Признание каждого на собственное мнение; эмоционально-положительное отношение к сверстникам;
- Уважительное отношение к окружающим, соблюдение культуры поведения, проявление терпимости при взаимодействии со взрослыми и сверстниками;
- Критичное отношение к своим поступкам, осознание ответственности за их последствия; умение преодолевать трудности в процессе достижения намеченных целей.

Метапредметные результаты:

Познавательные УУД (формирование и развитие навыков и умений):

- Работать с различными источниками информации, анализировать и оценивать информацию, преобразовывать её из одной формы в другую;
- Составлять тезисы, различные виды планов (простых, сложных и т. п.), структурировать учебный материал, давать определения понятий;

- Проводить наблюдения, ставить эксперименты и объяснять полученные результаты;
- Сравнивать и классифицировать, самостоятельно выбирая категории для указанных логических операций;
- Строить логические рассуждения, включающие установление причинно-следственных связей;
- Создавать схематические модели с выделением существенных характеристик объектов;
- Определять возможные источники необходимых сведений, проводить поиск информации, анализировать и оценивать её достоверность.

Регулятивные УУД (формирование и развитие навыков и умений):

- Организовать свою учебную и познавательную деятельность определять цели работы, ставить задачи, планировать (рассчитывать последовательность действий и прогнозировать результаты работы);
- Самостоятельно выдвигать варианты решения поставленных задач м выбирать средства достижения цели, предвидеть конечные результаты работы;
- Работать по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно;
- Выбирать целевые и смысловые установки в своих действиях и поступках по отношению к живой природе, здоровью своему и окружающих;
- Проводить работу над ошибками для внесения коррективов в усваиваемые знания;
- Владеть основами самоконтроля и самооценки, применять эти навыки при принятии решений и осуществлении осознанного выбора в учебной и познавательной деятельности.

Коммуникативные УУД (формирование и развитие навыков и умений):

- Адекватно использовать речевые средства для дискуссии и аргументации своей позиции, сравнивать разные точки зрения, аргументировать свою точку зрения, отстаивать свою позицию;
- Слушать и слышать другое мнение, вступать в диалог, вести дискуссию, оперировать фактами, как для доказательства, так и для опровержения существующего мнения;
- Интегрироваться и строить продуктивное взаимодействие со сверстниками и взрослыми;
- Участвовать в коллективном обсуждении проблем.

Предметные результаты:

1) В познавательной (интеллектуальной) сфере:

- Владеть основами научных знаний о живой природе и закономерностях её развития, выделять существенные признаки биологических объектов и процессов, основные свойства живых систем;
- Объяснять роли различных организмов в жизни человека;
- Проводить химические исследования и делать выводы на основе полученных результатов;
- Понимать основы химического состава живых организмов, роль химических элементов в образовании органических молекул, принципы структурной организации и функции углеводов, жиров и белков, нуклеиновых кислот;

- Характеризовать вклад микроэлементов, макроэлементов в образование неорганических и органических молекул живого организма, химические свойства и биологическую роль воды, катионов и анионов в обеспечении процессов жизнедеятельности;
- Характеризовать компоненты живого вещества и его функции, структуру и компоненты; осознавать последствия воздействия человека на биосферу; знать основные способы и методы охраны природы;
- Классифицировать экологические факторы; их влияние на здоровье человека;
- Применять на практике сведения об лекарственных препаратах.

2) В целостно-ориентационной сфере:

- Знать основы здорового образа жизни, применять их на практике;
- Анализировать и оценивать влияние факторов риска на здоровье человека;
- Приводить доказательства взаимосвязи человека и окружающей среды, зависимости здоровья человека от состаяния окружающей среды, необходимости защиты среды обитания человека.

3) В сфере трудовой деятельности:

• Соблюдать правила работы с биологическими приборами и инструментами (препаровальные иглы, скальпели, лупы, микроскопы).

4) В сфере физической деятельности:

• Демонстрировать приёмы оказания первой помощи.

2. Содержание курса

Общие понятия о лекарственных средствах (11 ч)

Определение понятия "лекарственный препарат". Парацельс – основоположник медицинской химии. Клавдий Гален – фармаколог. Формы лекарственных препаратов: таблетки, драже, свечи, эмульсии, суспензии, настойки. Химическая классификация лекарственных веществ.

Фармакологическая классификация лекарственных веществ.

Правила хранения и приема лекарственных препаратов в домашних условиях.

Лекарственные травы и их фармакологическое действие.

Формы лекарственных препаратов. Демонстрационный опыт № 1 «Формы лекарственных препаратов: таблетки, драже, свечи, эмульсии, суспензии, настойки»

Лекарственные травы и их фармакологическое действие.

Лабораторный опыт № 1 «Знакомство с образцами лекарственных средств, и опыты с ними»

Практическая работа № 1 «Распознавание лекарственных средств и их идентификация»

Практическая работа № 2 «Распознавание лекарственных средств и их идентификация»

Практическая работа № 3 «Фиточай. Аптечная технология лекарств»

Биотрансформация лекарственных веществ в организме. Механизмы почечной экскреции и факторы влияющие на выделение веществ с мочой.

Болезни химической зависимости, профилактика и лечение (9 ч)

Алкоголь. Табак (никотин). Наркотические вещества (марихуана, кокаин, опиаты, психомиметические средства, летучие вещества). Действие на организм, отдаленные эффекты действия, профилактика и лечение.

Демонстрационный опыт № 2 «Средства для наркоза» (общие анестетики)

Лабораторная работа № 1 «Анализ спиртовых растворов лекарственных средств»

Понятие «алкогольная зависимость», «игровая зависимость». Механизмы воздействия на организм человека. Пути преодоления.

Информация о влиянии никотина на организм человека.

Лабораторный опыт № 2 «Химический состав табачного дыма»

Практическая работа № 4 «Детектор трезвости» (демонстрация окисления спиртов)

Практическая работа № 5 «Физиологическое воздействие спирта на семена пшеницы и куриный белок»

Методы расчета в фармакологической химии (16 ч)

Правила приготовления растворов. Правила взвешивания твердых веществ. Массовая доля растворенного вещества в растворе. Расчет и приготовление раствора с определенной массовой долей растворенного вещества. Определение объемов растворов с помощью мерной посуды.

Лабораторная работа № 2 «Контроль качества лекарственных средств, содержащих спирты и эфиры»

Лабораторная работа № 3 «Комплексные соединения с солями тяжелых металлов»

Электрометрические методы. Лабораторный опыт № 3 «Потенциометрическое определение рН раствора, потенциометрическое титрование»

Электрометрические методы. Лабораторный опыт № 4 «Потенциометрическое определение рН раствора, потенциометрическое титрование»

Электрометрические методы. Лабораторный опыт № 5 «Амперометрическое титрование, вольтамперометрия»

Электрофорез (фронтальный, зональный, капиллярный)

Хроматография. Фотоколориметрия. Масс – спектрометрия.

Температуры плавления и затвердевания. Лабораторный опыт № 6 «Температурные пределы перегонки»

Температуры плавления и затвердевания. Лабораторный опыт № 7 «Температура каплепадения» (на примере жира, воска, парафина)

Температуры плавления и затвердевания. Практическая работа № 6 «Определение температуры плавления лекарственных веществ»

Лабораторный опыт № 8 «Взвешивание твердых веществ»

Мерная посуда. Техника проведения лабораторных исследований. Демонстрационный опыт $N \ge 3$ «Мерная лабораторная посуда»

Практическая работа № 7 «Определение объёмов растворов с помощью мерной посуды»

Растворы. Способы измерения концентрации. Практическая работа № 8 «Приготовление растворов с определенной массовой долей вещества»

Практическая работа № 9 «Приготовление растворов с определенной массовой долей вещества»

Химические элементы и их лечебное действие (24 ч)

Хлор. Хлориды. Кровоостанавливающие средства. Рассказ о применении хлорида кальция как успокаивающего средства при лечении неврозов, бронхиальной астмы, туберкулеза.

Йод. Йодиды. Лечение глазных болезней. Мазь на основе йодида калия используется для лечения грибкового поражения ногтей. Йод входит в состав белка щитовидной железы, поставляющей организму такие гормоны, как тироксин, дийодтирозин.

Сера. Сульфаты. Изготовление повязок и шин, зубопротезная техника.

Азот. Нитраты. Препараты соединений азота: водный раствор аммиака (10%-й), оксид азота(I) (физиологическое действие установлено Г.Дэви, применяют для масочного наркоза в хирургической практике), нитрит натрия (проявляет слабощелочную реакцию в воде, является коронарно-расширяющим средством при стенокардии, противоядием при отравлении метгемоглобинобразующими веществами, цианидами).

Фосфор. Фосфаты. Применение в зубопротезной практике. Почти все важнейшие физиологические процессы в организме человека связаны с превращением фосфорорганических соединений. Фосфор сосредоточен в скелете, мышцах и нервной ткани. Зубная эмаль содержит апатит.

Углерод. Карбонаты. Адсорбирующие и нейтрализующие средства. Карбонат калия применяется как составная часть пилюль Бло для превращения сульфата железа(II) в карбонат:

$$FeSO_4 + K_2CO_3 = FeCO_3^{\downarrow} + K_2SO_4.$$

Роль металлов в медицине.

Последствия нарушений химического состава живых организмов. Влияние недостатка и избытка металлов на состояние организма человека. Металлотерапия — использование комплексных соединений для лечения болезней.

Ядовитое действие химических веществ на организм. Первая помощь при отравлении химическими реактивами.

Органогены — элементы, входящие в состав органических веществ. Демонстрационный опыт № 4 «Обзор органогенов (C, H, O, N, P, S, Se)»

Роль металлов в медицине.

Ядовитое действие химических веществ на организм. Демонстрационный опыт (видеоролик) № 5 «Ртуть, мышьяк, метиловый спирт, фосфор белый)

Правила хранения ядов в быту. Меры первой помощи при отравлении.

Лечение болезней с применением химических препаратов. Развитие синтетической органической химии. Демонстрационный опыт N_{2} 6 «Синтетические органические лекарственные средства (антивирусные, обезболивающие»»

Синтез в лабораториях новых лекарственных средств и их внедрение в медицинскую практику. Демонстрационный опыт N = 7 «Состав синтетического обезболивающего, на примере анальгетика»

Лабораторный опыт № 8 «Качественные реакции на хлориды»

Применение хлорида кальция в медицине (успокаивающее средство, лечение неврозов, бронхиальной астмы, туберкулеза. Лабораторный опыт № 9 «Применение и свойства хлорида кальция»

Лабораторный опыт № 10 «Качественная реакция на йодиды»

Практическая работа N 10 «Изготовление мази на основе йодида калия. Использование для лечения грибкового поражения ногтей»

Лабораторный опыт № 11 «Качественная реакция на сульфаты»

Лабораторный опыт № 12 «Изготовление повязок и шин, зубопротезная техника»

Лабораторный опыт № 13 «Изготовление повязок и шин, зубопротезная техника»

Лабораторный опыт № 14 «Качественная реакция на нитраты»

Лабораторный опыт № 15 «Препараты соединений азота, на примере аммиака»

Лабораторный опыт № 16 «Качественные реакции на фосфаты»

Лабораторный опыт № 17 «Качественные реакции на карбонаты»

Лабораторный опыт № 18 «Адсорбирующие и нейтрализующие средства»

Лабораторный опыт № 19 «Превращение сульфата железа (11) в карбонат»

Понятие об органических веществах. Аспирин, физические свойства, история получения, применение.

Фталазол. Хинин. Антибиотики.

Лабораторный опыт № 20 «Растворение в воде аспирина, фталазола».

Лабораторный опыт № 21 «Определение салициловой и уксусной кислоты»

Самые простые из лекарств (5 ч)

Борная кислота, борный спирт, антисептическая активность.

Демонстрационный опыт № 8 «Физиологический раствор. Ляпис»

Нашатырный спирт. Гексагидрат хлорида кальция. Гептагидрат сульфата цинка. Активированный уголь

Йод: история открытия, физические и химические свойства, применение.

Лабораторный опыт № 22 «Растворение йода в воде, в спирте»

Перманганат калия. Применение растворов в быту. Меры первой помощи при отравлении.

Лабораторный опыт № 23 «Обесцвечивание раствора перманганата калия активированным углем»

Пероксид водорода. Применение в медицине: кровоостанавливающее и дезинфицирующее средство.

Лабораторный опыт № 24 «Жидкий хамелеон». Разложение пероксида водорода.

Проектная деятельность (5 ч)

В конце курса происходит защита групповой, индивидуальной творческой работы (проект). Организуется смотр-выставка творческих работ: стенгазета, бюллетень ЗОЖ, связь химии с медициной, современные достижения медицины.

При реализации данной Программы используются следующие методы обучения:

- Словесные (лекции, объяснения, беседы, консультации);
- Наглядные (наглядные пособия, плакаты, видео, CD);
- Исследовательские (выполнение обучающимися исследовательских заданий с использованием оборудования «Точка роста»);

Основными формами проведения занятий являются комбинированные занятия, состоящие из теоритической и практической части.

Усвоение материала контролируется при помощи опросов, тестирования, выполнения практических заданий.

Формы организации учебного процесса:

- Индивидуальные;
- Групповые;
- Индивидуально-групповые;
- Фронтальные;
- Практические работы;
- Демонстрационные опыты;
- Лабораторные работы;
- Проектная деятельность.

Технологии: здоровьесберегающая, ИКТ-технология, проблемного обучения.

Виды и формы контроля:

- Наблюдение;
- Беседа;
- Фронтальный опрос;
- Опрос в парах;
- Практическая работа;
- Химический диктант;
- Тестирование.

Формы результатов освоения программы внеурочной деятельности:

- 1. Отметка уровня достижений обучающегося в листе педагогического наблюдения;
- 2. Записи в журнале учёта о результативности участия обучающихся в мероприятиях разного вида и уровня (диплом, грамота, благодарность, другое);
- 3. Записи в журнале учёта об участии в выездных мероприятиях.

3. КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

внеурочной деятельности «Химия и медицина» - 10 класс (70 часов)

с указанием использования оборудования цифровой лаборатории

«Точка роста»

	№ п/п	Тема урока	Кол-во часов	Дата	Оборудование
Ī	Общи	е понятия о лекарственных сред	ствах (11 ч)		
	1.	Вводный инструктаж по ТБ.	1		
		Общие понятия о			

	лекарственных средствах.			
	Парацельс, Клавдий Гален-			
	великие химики.			
2.	Природа лекарств. Источники	1		
	получения лекарственных			
	средств.			
3.	Номенклатура лекарств.	1		
	Понятие о международных			
	непатентованных и фирменных			
	(торговых) наименованиях			
	лекарств.			
4.	Основные механизмы	1		
	проникновения лекарственных			
	веществ через биологические			
	мембраны: фильтрация,			
	диффузия, транспорт с			
	участием переносчиков, эндо- и			
	экзоцитоз.	1		Тоб-то-то-то
5.	Формы лекарственных	1		Таблетки, драже,
	препаратов.			свечи, эмульсии,
	Демонстрационный опыт № 1 «Формы лекарственных			суспензии, настойки.
	«Формы лекарственных препаратов: таблетки, драже,			настоики.
	свечи, эмульсии, суспензии,			
	евечи, эмульсии, суспензии, настойки»			
6.	Лекарственные травы и их	1		
0.	фармакологическое действие.	1		
7.	Лабораторный опыт № 1	1		Реактивы и
	«Знакомство с образцами			химическое
	лекарственных средств, и			оборудование
	опыты с ними»			13
8.	Практическая работа № 1	1		Реактивы и
	«Распознавание лекарственных			химическое
	средств и их идентификация»			оборудование
9.	Практическая работа № 2	1		Реактивы и
	«Распознавание лекарственных			химическое
	средств и их идентификация»			оборудование
10.	Практическая работа № 3	1		Сбор трав,
	«Фиточай. Аптечная			химическое
	технология лекарств»			оборудование
11.	Биотрансформация	1		
	лекарственных веществ в			
	организме. Механизмы			
	почечной экскреции и факторы			
	влияющие на выделение			
	веществ с мочой.			
	Болезни химической за	висимости, профил	актика и лечение (9	ч)
12.	Общее понятие о химической	1		
	зависимости.			
13.	Соотношение между	1		
	концентрацией лекарственных			

	веществ и фармакологическим		
1.4	эффектом.	1	, D
14.	Лекарственные средства,	1	Реактивы и
	действующие на центральную		химическое
	нервную систему.		оборудование
	Демонстрационный опыт № 2		
	«Средства для наркоза» (общие		
1.5	анестетики)	1	
15.	Лабораторная работа № 1	1	Реактивы и
	«Анализ спиртовых растворов		химическое
1.5	лекарственных средств»		оборудование
16.	Понятие «алкогольная	1	
	зависимость», «игровая		
	зависимость». Механизмы		
	воздействия на организм		
	человека. Пути преодоления.		
17.	Информация о влиянии	1	
	никотина на организм человека.		
18.	Лабораторный опыт № 2	1	Реактивы и
	«Химический состав табачного		химическое
	дыма»		оборудование
19.	Практическая работа № 4	1	Реактивы и
	«Детектор трезвости»		химическое
	(демонстрация окисления		оборудование
	спиртов)		
20.	Практическая работа № 5	1	Реактивы и
	«Физиологическое воздействие		химическое
	спирта на семена пшеницы и		оборудование,
	куриный белок»		семена пшеницы,
			яйцо
2.1		в фармакологичест	кой химии (16 ч)
21.	Введение в фармакологическую	1	
	химию. Определение		
	фармакологии, её место среди		
	других медико-биологических		
22	наук.		
22.	Лабораторная работа № 2	1	Реактивы и
	«Контроль качества		химическое
	лекарственных средств,		оборудование
22	содержащих спирты и эфиры»	1	
23.	Лабораторная работа № 3	1	
	«Комплексные соединения с		
2.4	солями тяжелых металлов»		
24.	Электрометрические методы.	1	Датчик
	Лабораторный опыт № 3		определения рН,
	«Потенциометрическое		температуры.
	определение рН раствора,		
	потенциометрическое		
_	титрование»		
25.	Электрометрические методы.	1	Датчики
	Лабораторный опыт № 4		

	«Потенциометрическое		
	определение рН раствора,		
	потенциометрическое		
	титрование»		
26.	Электрометрические методы.	1	Датчики
	Лабораторный опыт № 5		
	«Амперометрическое		
	титрование,		
	вольтамперометрия»		
27.	Электрофорез (фронтальный,	1	
	зональный, капиллярный)		
28.	Хроматография.	1	
	Фотоколориметрия. Масс –		
	спектрометрия.		
29.	Температуры плавления и	1	Датчики
	затвердевания. Лабораторный		определения
	опыт № 6 «Температурные		температуры
	пределы перегонки»		
30.	Температуры плавления и	1	Датчики
30.	затвердевания. Лабораторный	1	определения
	опыт № 7 «Температура		температуры
	каплепадения» (на примере		Температуры
	жира, воска, парафина)		
	жира, воска, парафипа)		
31.	Температуры плавления и	1	Датчики
01.	затвердевания. Практическая	_	определения
	работа № 6 «Определение		температуры
	температуры плавления		
	лекарственных веществ»		
32.	Лабораторный опыт № 8	1	Реактивы и
32.	«Взвешивание твердых	1	химическое
	«Вэвенизание твердых веществ»		оборудование,
	веществ//		лабораторные
			весы.
33.	Мерная посуда. Техника	1	Химическая
33.	проведения лабораторных	1	
	проведения лаоораторных исследований.		мерная лабораторная
	демонстрационный опыт № 3		
	«Мерная лабораторная посуда»		посуда
24		1	Химическая
34.	Практическая работа № 7 «Определение объёмов	1	
	_		мерная
	растворов с помощью мерной		лабораторная
25	Посуды»	1	посуда
35.	Растворы. Способы измерения	1	Реактивы и
	концентрации. Практическая		химическое
	работа № 8 «Приготовление		оборудование
	растворов с определенной		
2.5	массовой долей вещества»		
36.	Практическая работа № 9	1	Реактивы и
	«Приготовление растворов с		химическое

	определенной массовой долей			оборудование
	вещества»			осорудование
		∟ иенты и его лечебное	е действие (24 ч)	
37.	Химические элементы и его	1	,,====(====)	
	лечебное действие.			
	Классификация биогенных			
	элементов (органогены)			
38.	Органогены – элементы,	1		Реактивы и
	входящие в состав	1		химическое
	органических веществ.			оборудование
	Демонстрационный опыт № 4			осорудовини
	«Обзор органогенов (С, H, O,			
	N, P, S, Se)»			
39.	Роль металлов в медицине.	1		
	I com more a modularia.	-		
40.	Ядовитое действие химических	1		
	веществ на организм.			
	Демонстрационный опыт			
	(видеоролик) № 5 «Ртуть,			
	мышьяк, метиловый спирт,			
	фосфор белый)			
41.	Правила хранения ядов в быту.			
	Меры первой помощи при			
	отравлении.			
42.	Лечение болезней с	1		Реактивы и
	применением химических			химическое
	препаратов. Развитие			оборудование
	синтетической органической			
	химии. Демонстрационный			
	опыт № 6 «Синтетические			
	органические лекарственные			
	средства (антивирусные,			
	обезболивающие»»			
43.	Синтез в лабораториях новых	1		Реактивы и
	лекарственных средств и их			химическое
	внедрение в медицинскую			оборудование
	практику. Демонстрационный			
	опыт № 7 «Состав			
	синтетического			
	обезболивающего, на примере			
	анальгетика»			
44.	Лабораторный опыт № 8	1		
	«Качественные реакции на			
	хлориды»			D
45.	Применение хлорида кальция в	1		Реактивы и
	медицине (успокаивающее			химическое
	средство, лечение неврозов,			оборудование
	бронхиальной астмы,			
	туберкулеза. Лабораторный			
	опы т № 9 «Применение и			
	свойства хлорида кальция»			

4 - 1	T // 11 12 14 14 14 14 14 14 14 14 14 14 14 14 14	1	
46.	Лабораторный опыт № 10	1	Реактивы и
	«Качественная реакция на		химическое
	йодиды»		оборудование
47.	Практическая работа № 10	1	Реактивы и
	«Изготовление мази на основе		химическое
	йодида калия. Использование		оборудование
	для лечения грибкового		
	поражения ногтей»		
48.	Лабораторный опыт № 11	1	Реактивы и
	«Качественная реакция на		химическое
	сульфаты»		оборудование
49.	Лабораторный опыт № 12	1	Реактивы и
	«Изготовление повязок и шин,	_	химическое
	зубопротезная техника»		оборудование
50.	Лабораторный опыт № 13	1	Реактивы и
50.	«Изготовление повязок и шин,	1	химическое
	зубопротезная техника»		оборудование
51.	Лабораторный опыт № 14	1	Реактивы и
31.	«Качественная реакция на	1	химическое
	нитраты»		оборудование
52.	Лабораторный опыт № 15	1	Реактивы и
32.	«Препараты соединений азота,	1	химическое
	на примере аммиака»		оборудование
53.	Лабораторный опыт № 16	1	Реактивы и
33.	«Качественные реакции на	1	химическое
	«качественные реакции на фосфаты»		оборудование
54.	Лабораторный опыт № 17	1	Реактивы и
J 4 .	«Качественные реакции на	1	химическое
	«качественные реакции на карбонаты»		оборудование
55.	Лабораторный опыт № 18	1	Реактивы и
33.	«Адсорбирующие и	1	химическое
	«Адсоропрующие и нейтрализующие средства»		_
56.		1	оборудование Реактивы и
50.	Лабораторный опыт № 19 «Превращение сульфата железа	1	
	1 1 1		химическое
57.	(11) в карбонат»	1	оборудование
37.	Понятие об органических	1	
	веществах. Аспирин,		
	физические свойства, история		
50	получения, применение.	1	
58.	Фталазол. Хинин.	1	
70	Антибиотики.	1	
59.	Лабораторный опыт № 20	1	Реактивы и
	«Растворение в воде аспирина,		химическое
	фталазола».	4	оборудование
60.	Лабораторный опыт № 21	1	Реактивы и
	«Определение салициловой и		химическое
	уксусной кислоты»		оборудование

Самые простые из лекарств (5 ч)

	антисептическая активность.		химическое
	Демонстрационный опыт № 8		оборудование
	«Физиологический раствор.		
	Ляпис»		
62.	Нашатырный спирт.	1	Реактивы и
	Гексагидрат хлорида кальция.		химическое
	Гептагидрат сульфата цинка.		оборудование
	Активированный уголь		
63.	Йод: история открытия,	1	Реактивы и
1	физические и химические		химическое
1	свойства, применение.		оборудование
	Лабораторный опыт № 22		
	«Растворение йода в воде, в		
	спирте»		
64.	Перманганат калия.	1	Реактивы и
	Применение растворов в быту.		химическое
	Меры первой помощи при		оборудование
	отравлении. Лабораторный		15"
	опыт № 23 «Обесцвечивание		
	раствора перманганата калия		
	активированным углем»		
65.	Пероксид водорода.	1	Реактивы и
	Применение в медицине:	1	химическое
	кровоостанавливающее и		оборудование
	дезинфицирующее средство.		Ооорудование
	Лабораторный опыт № 24		
	«Жидкий хамелеон».		
	Разложение пероксида		
	водорода.		
		ктная деятельность	. (5 ч)
66.	Теоретические основы опытно-	1	Реактивы и
	экспериментальной и		химическое
	проектной деятельности.		оборудование
67.	Подготовка проекта. Сбор	1	Реактивы и
-	информации по данной теме.		химическое
	iniqopinadim ne Allinen 15		оборудование
68.	Подготовка проекта. Сбор	1	Реактивы и
	информации по данной теме.	1	химическое
	Моделирование проектной		оборудование
	деятельности.		Соорудовини
69.	Подготовка учебных проектов к	1	
٠,٠	защите	1	
70.	Обобщение, систематизация и	1	
, , ,	коррекция знаний учащихся за	•	
1			
	купс «Химия и мелицина», 10		1
	курс «Химия и медицина», 10 класс. Тестовый контроль.		

Реактивы и

61. Борная кислота, борный спирт,

ПРИЛОЖЕНИЕ

Практическая работа 1.

Знакомство с образцами лекарственных средств и опыты с ними

Цели. Ознакомить учащихся с образцами лекарственных препаратов, научить делать расчеты для приготовления некоторых лекарственных средств и определения их формул. Расширить и углубить знания по данной теме.

Оборудование и реактивы. Ступка и пестик, пробирки, спиртовка, спички, держатель для пробирок; настойка йода, 2M (8%-й) раствор NaOH, 1M (4%-й) раствор HCl, зеленка, сульфат магния, аспирин, димедрол, ампициллин, спиртовый раствор левомицетина, H_2SO_4 (конц.), раствор CuSO₄, раствор фурацилина.

Задания.

1. Изучение йодной настойки.

Йодную настойку обычно считают спиртовым раствором йода. На самом деле она содержит 5 г йода, 2 г йодида калия и 50 мл 96%-го этилового спирта на каждые 50 мл воды. Для чего в йодную настойку добавляют йодид калия? Дело в том, что йод в воде почти не растворим. А йодид калия образует с йодом хорошо растворимый комплекс $K[I(I_2)]$. Часто формулу этого комплекса изображают в упрощенном виде – $K[I_3]$. Этиловый спирт еще больше повышает растворимость йода.

Рассмотрите выданный образец йодной настойки и ознакомьтесь со способом решения залачи 1.

3 а д а ч а 1. Рассчитайте массу йода, который может быть связан с помощью 1,66 г йодида калия, если степень превращения йода в растворимый комплекс составляет 10 %.

1) Уравнение реакции образования комплекса:

$$I_2 + KI = K[I(I_2)].$$

2) Количество вещества КІ равно:

$$V_1(KI) = m(KI) / M(KI) = 1,66 / 166 = 0,01$$
 моль.

3) Количество вещества KI, вступившего в реакцию с йодом (и, соответственно, количество вещества йода):

$$V_2(KI) \bullet \alpha = 0.01 \bullet 0.1 = 0.001 \text{ моль} = V(I_2).$$

4) Масса йода, связанного в комплекс:

$$m(I_2) = V(I_2) \cdot M(I_2) = 0.001 \cdot 254 = 0.254 \Gamma.$$

Ответ. Масса йода равна 0,254 г.

2. Получение йодоформа. (Работу проводить под тягой.)

В пробирку наливают 1 мл спиртового раствора йода и приливают к нему 2M (8%-й) раствор NaOH до тех пор, пока смесь не обесцветится. Выпадают характерные светло-желтые кристаллы йодоформа.

3. Изучение бриллиантового зеленого и определение его формулы.

Рассмотрите образец бриллиантового зеленого и изучите способ решения задачи 2.

3 а д а ч а 2. Определите брутто-формулу бриллиантового зеленого (зеленки), если известно, что при сгорании 0,01 моль этого соединения образуется 0,18 моль воды и выделяется 6,048 л оксида углерода(IV). Суммарная массовая доля азота, серы и кислорода равна 0,2562, а мольное соотношение N: S: О в веществе равно 2: 1: 4.

Дано: Найти:

$$V$$
 (зел.) = 0,01 моль, $C_x H_y N_{2z} S_z O_{4z}$

$$V(H_2O) = 0.18$$
 моль,

$$V(CO_2) = 6,048 \text{ л},$$

$$(N, S, O) = 0.2562,$$

$$N:S:O=2:1:4.$$

Решение

1) Уравнение реакции горения органического вещества в общем виде:

$$C_xH_yN_{2z}S_zO_{4z} + aO_2 = xCO_2 + y/2H_2O + zN_2 + zSO_2.$$

2) Учитывая стехиометрические коэффициенты в уравнении реакции, запишем соотношения для расчета x и y:

$$V (B-Ba) / 1 = V (CO_2) / x = V (H_2O) / (y/2).$$

3) Найдем количество вещества СО2:

$$V(CO_2) = V(CO_2)/V_M = 6,048/22,4 = 0,27$$
 моль.

4) Поскольку $V(B-Ba) / 1 = V(CO_2) / x$,

To
$$x = {}^{\vee}(CO_2) / {}^{\vee}(B-Ba) = 0.27 / 0.01 = 27.$$

Кроме того,
$$V(B-Ba) / 1 = V(H_2O) / (y/2)$$
,

следовательно:

$$y = 2 V (H_2O) / V (B-Ba) = 0.36 / 0.01 = 36.$$

5) Предварительная формула соединения — $C_{27}H_{36}N_{2z}S_zO_{4z}$, а его молярная масса M может быть выражена следующим образом:

$$M(B-Ba) = 27 \cdot 12 + 36 \cdot 1 + 0.2562 \cdot M(B-Ba).$$

Отсюда M (в-ва) = 484 г/моль.

6)
$$M$$
 (B-Ba) = $27 \cdot 12 + 36 \cdot 1 + (14 \cdot 2z + 32 \cdot z + 16 \cdot 4z) = 484$.

Отсюда z = 1.

Ответ. Брутто-формула бриллиантового зеленого – $C_{27}H_{36}N_2SO_4$.

4. Действие кислот на бриллиантовый зеленый.

В пробирку наливают 1 мл раствора бриллиантового зеленого и столько же 1М (4%-го) раствора соляной кислоты. Появляется оранжевое окрашивание.

5. Получение основания бриллиантового зеленого.

В пробирку наливают 1 мл раствора бриллиантового зеленого и добавляют по каплям 2M раствор NaOH. Образуется бледно-зеленый осадок основания бриллиантового зеленого.

6. Изучение английской соли.

Английская ("горькая") соль используется медиками для снижения артериального давления, при некоторых заболеваниях нервной системы, в качестве слабительного средства. Рассмотрите образец соли, проверьте ее растворимость. Для этого 5 г соли растворите в 200 мл воды.

Определите формулу "горькой" соли, если массовые доли элементов в ней составляют: 9,76 % Mg; 13,01 % S; 71,54 % O; 5,69 % H.

Oтвет. MgSO₄•7H₂O.

7. *Изучение аспирина.*

Рассмотрите образцы аспирина и установите его брутто-формулу, если массовые доли входящих в его состав элементов составляют: 4,45% H; 35,55% O; 60% C. Молярная масса аспирина 180 г/моль.

Ответ. C₉H₈O₄.

8. Опыт с димедролом.

Рассмотрите образцы димедрола. Одну таблетку измельчите и поместите в пробирку. Добавьте в нее 2–3 капли концентрированной серной кислоты. Наблюдайте образование желтой оксониевой соли.

9. Опыт с антибиотиком.

В пробирку наливают 1 мл раствора ампициллина и столько же 2M раствора NaOH. В полученную смесь добавляют 2–3 капли 10%-го раствора CuSO₄. Пробирку встряхивают. Появляется фиолетовое окрашивание, характерное для биуретовой реакции. Постепенно окраска изменяется на бурую.

10. Щелочное расшепление левомицетина.

В пробирку наливают 1 мл раствора левомицетина (в этиловом спирте), добавляют столько же 2М раствора щелочи и нагревают ее. Появляется кирпично-красное окрашивание, характерное для азобензойной кислоты, образующейся в ходе разложения левомицетина в щелочной среде.

11.Опыт с фурацилином.

В пробирку наливают 1 мл раствора фурацилина и добавляют к нему 0,5 мл 2M раствора NaOH. Наблюдается изменение окраски с желтой на оранжево-красную.

Практическая работа 2.

Распознавание лекарственных средств и их идентификация

Цели. Научить школьников идентифицировать с помощью химических реакций наиболее распространенные лекарственные средства. Способствовать совершенствованию их умений обращаться с химическими веществами, химическими приборами и оборудованием. Предоставить учащимся возможность удовлетворить свои интересы в области химии и медицины в процессе проведения экспериментальной работы.

Оборудование и реактивы. Пробирки, ступка с пестиком, химические стаканчики (50 мл, 2 шт.), коническая колба, воронка, фильтровальная бумага, спиртовка, спички, медная сетка, держатель для пробирок; таблетки парацетамола, аспирина, гидроперита*, стрептоцида, анальгина, растворы: $FeCl_3$ (10%-й), $K_2Cr_2O_7$ (10%-й), Na_2CO_3 (10%-й), NaOH (10%-й), $Cr_2(SO_4)_3$ (10%-й), $BaCl_2$ (20%-й); HNO_3 (конц.), HCl (p-pы 1 : 1 и 2M).

Задания.

1. *Анализ парацетамола.*

Парацетамол по химическому строению является производным фенола. В пара-положении относительно гидроксигруппы к бензольному кольцу присоединена аминогруппа, в которой один атом водорода замещен группой — СОСН₃. Лекарственные средства аналогичного строения идентифицируются либо по фенольной гидроксигруппе (реакция с хлоридом железа(III)), либо как первичные амины ароматического ряда.

а) Реакция с хлоридом железа(III).

Половинку таблетки парацетамола растворяют в 25 мл воды и добавляют 2–3 мл раствора хлорида железа(III). Наблюдается фиолетовое окрашивание.

б) Реакция с окислителями.

Четверть таблетки парацетамола кипятят с 10 мл соляной кислоты, добавляют равный объем воды и охлаждают. Смесь при необходимости фильтруют. К фильтрату прибавляют по каплям раствор дихромата калия. Наблюдается фиолетовое окрашивание.

в) Кислотный гидролиз парацетамола.

К 1 мл раствора парацетамола добавляют 0,5 мл 2M раствора HCl, нагревают смесь до кипения и кипятят в течение 1 мин. Затем охлаждают пробирку и осторожно нюхают ее содержимое. Ощущается запах уксусной кислоты.

2. Разложение ацетилсалициловой кислоты (аспирина).

Растертую в ступке таблетку поместить в пробирку. Добавить 2–3 мл раствора карбоната натрия. Раствор кипятить 2–3 мин. К охлажденному раствору добавить 1–3 мл соляной кислоты. Раствор нагреть. Чувствуется запах уксусной кислоты.

3. Анализ гидроперита.

В пробирку поместить растертую таблетку гидроперита, добавить 1-2 мл гидроксида натрия и 1-2 мл раствора сульфата хрома(III). Образуется ярко-желтый осадок хромата натрия.

$$2NaOH + H_2O_2 = Na_2O_2 + 2H_2O_3$$

$$5\text{Na}_2\text{O}_2 + \text{Cr}_2(\text{SO}_4)_3 = 2\text{Na}_2\text{Cr}\text{O}_4^{\downarrow} + 3\text{Na}_2\text{SO}_4 + \text{O}_2^{\uparrow}.$$

4. Анализ стрептоцида.

В пробирку поместить растертую таблетку стрептоцида, добавить 1-2 мл азотной кислоты и осторожно прокипятить в течение 1-2 минут. Раствор охладить, добавить к нему 2 мл дистиллированной воды и 1-2 мл раствора хлорида бария. Выпадает осадок белого цвета.

5. *Анализ анальгина.*

К 1 мл раствора анальгина добавляют 3–4 капли 10%-го раствора хлорида железа(III). Появляется темно-синее окрашивание, постепенно переходящее в темно-зеленое, а затем в оранжево-желтое.

Задания к разделу

"Химические элементы и их лечебное действие"

• Хлор. Хлориды.

Написать уравнения химических реакций, упоминаемых в следующем тексте: "Хлорид аммония при контакте с солями свинца и серебра образует малорастворимые хлориды; с щелочами — разлагается с выделением аммиака. В слабокислой среде, создаваемой хлоридом аммония, нитрит натрия разлагается с образованием азотистой кислоты и выделением оксидов азота".

Как химически грамотно хранить препарат хлорида аммония?

• Йод. Йодиды.

Написать уравнения химических реакций, упоминаемых в следующем тексте: "При контакте йода с сульфидами происходит выделение серы; с аммиаком йод образует нерастворимый и взрывчатый йодистый азот; с солями ртути, серебра и свинца образует труднорастворимые осадки йодидов. Пары? йода могут действовать на многие медикаменты, приводя к их порче. Так, при воздействии йода на хлорид ртути(I) (каломель) образуются дихлорид и диоксид ртути". Как химически грамотно хранить препараты йода?

• Сера. Сульфаты.

Написать уравнения химических реакций, упоминаемых в следующем тексте: "При контакте сульфата магния с солями кальция происходит осаждение нерастворимого в воде гипса; с едкими щелочами — осаждение нерастворимого в воде гидроксида магния; с карбонатами — осаждение нерастворимого в воде основного карбоната магния; с солями свинца — осаждение нерастворимого сульфата".

Как химически грамотно хранить препарат сульфата магния?

• Углерод. Карбонаты.

Написать уравнения химических реакций, упоминаемых в следующем тексте: "При смешивании гидрокарбоната натрия с кислотами и веществами с кислой средой раствора происходит взаимодействие с выделением углекислого газа; с хлоридом кальция дает осадок карбоната кальция; с солями алюминия, железа, магния, ртуги, свинца и цинка происходит образование нерастворимых соединений".

Как химически грамотно хранить препарат гидрокарбоната натрия?

(В тексте приведены иллюстрации, присланные автором статьи.)

^{*} Гидроперит – комплексное соединение H_2O_2 с мочевиной ($CO(NH_2)_2 \cdot H_2O_2$. Для получения 1%-го раствора пероксида водорода в 100 мл воды растворяют две таблетки. – *Прим. ред*.